Pelletron Digital Filtering

Local application Wed, Mar 28, 2007

Some Pelletron signals available for ECool are hard to analyze. A bump may exist, but buried in enough noise that it is hard to see. A new LA called PELF is designed to use a digital filtering scheme to tease out the bumps amid the noise. This note describes the algorithm used.

The signals to be treated in this way are the following:

R: names	Description	Range
ACCRV	Accel tube current	$\pm 200 \mu A$
DECRV	Decel tube current	$\pm 200 \mu A$
COLRV	Column current	$\pm 200 \mu A$
GVMVV	GVM out volts	$\pm 300 \text{ kV}$
TPSERV	TPS error volts	$\pm 10 \text{ V}$
CPO1V	CPO #1 volts	$\pm 100 \text{ kV}$

Corresponding digital filter output signals are the same but with names ending in A, not V.

The digital filter used is a Bessel Lowpass type of order 2. The following algorithm is used:

where the following constants are used for a 15 Hz sample rate:

```
#define GAIN (368.8278871) /* GAIN factor in filter algorithm */#define c1 (-0.9118429230) /* coefficients used in algorithm */#define c2 ( 1.9091316313)
```

As implemented in the program, the input values are given in A/D volts, in the range \pm 10 V. The algorithm keeps track of the two previous outures in computing the current output value.

The resulting output data, in raw units of ± 32768 range, is deposited into the reading fields of a series of consecutive analog channels.

Here is the parameter layout for PELF:

```
Prompt Size Meaning
ENABLE B 2 Enable Bit# for this LA
INPUT C 2 Input signals base Chan#
NCHANS 2 #channels
OUTPUT C 2 Output signals base Chan#
```

IRM execution time is approximately (45 + 30*n) μ s, with n the number of channels specified.